An exotic Deligne-Langlands correspondence for symplectic groups
نویسندگان
چکیده
منابع مشابه
An exotic Deligne-Langlands correspondence for symplectic groups
Let G = Sp(2n,C) be a complex symplectic group. We introduce a G× (C)-variety Nl, which we call the l-exotic nilpotent cone. Then, we realize the Hecke algebra H of type C (1) n with three parameters via equivariant algebraic K-theory in terms of the geometry of N2. This enables us to establish a Deligne-Langlands type classification of simple H-modules under a mild assumption on parameters. As...
متن کاملAn exotic Deligne-Langlands correspondence for symplectic group
Let G = Sp(2n,C) be a complex symplectic group. In the companion paper [math.AG/0601154], we introduced a (G × C × C)-variety N, which we call the exotic nilpotent cone. In this paper, we realize the Hecke algebra H of type C n with unequal parameters via equivariant algebraic K-theory in terms of the geometry of N. This enables us to establish a Deligne-Langlands type classification of “non-cr...
متن کاملTempered modules in exotic Deligne-Langlands correspondence
The main purpose of this paper is to produce a geometric realization for the tempered modules of the affine Hecke algebra of type C (1) n with arbitrary, non-root of unity, unequal parameters, using the exotic DeligneLanglands correspondence ([Ka08a]). Our classification has several applications to the Weyl group module structure of the tempered Hecke algebra modules. In particular, we provide ...
متن کاملAn exotic Springer correspondence for symplectic groups
Let G be a complex symplectic group. In [K1], we singled out the nilpotent cone N of some reducible G-module, which we call the (1-) exotic nilpotent cone. In this paper, we study the set of G-orbits of the variety N. It turns out that the variety N gives a variant of the Springer correspondence for Weyl groups of type C, but shares a similar flavor with that of type A case. (I.e. there appears...
متن کاملOn the Langlands correspondence for symplectic motives
In this paper, we present a refinement of the global Langlands correspondence for discrete symplectic motives of rank 2n over Q. To such a motive Langlands conjecturally associates a generic, automorphic representation π of the split orthogonal group SO2n+1 over Q, which appears with multiplicity one in the cuspidal spectrum. Using the local theory of generic representations of odd orthogonal g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Duke Mathematical Journal
سال: 2009
ISSN: 0012-7094
DOI: 10.1215/00127094-2009-028